Source code for amici.petab.sbml_import

import logging
import math
import os
import re
from _collections import OrderedDict
from itertools import chain
from pathlib import Path

import libsbml
import petab.v1 as petab
import sympy as sp
from petab.v1.models import MODEL_TYPE_SBML
from sympy.abc import _clash

import amici
from amici import MeasurementChannel
from amici.logging import log_execution_time, set_log_level

from . import PREEQ_INDICATOR_ID
from .import_helpers import (
    check_model,
    get_fixed_parameters,
    get_observation_model,
)
from .util import get_states_in_condition_table

logger = logging.getLogger(__name__)


def _workaround_initial_states(
    petab_problem: petab.Problem, sbml_model: libsbml.Model, **kwargs
) -> list[str]:
    """Add initial assignments and their targets to represent initial states
    from the PEtab condition table.

    :return: List of parameters that were added to the model and need to be
        processed as fixed parameters during SBML import.
    """

    # TODO: to parameterize initial states or compartment sizes, we currently
    #  need initial assignments. if they occur in the condition table, we
    #  create a new parameter initial_${speciesOrCompartmentID}.
    #  feels dirty and should be changed (see also #924)

    # state variable IDs and initial values specified via the conditions' table
    initial_states = get_states_in_condition_table(petab_problem)
    # is there any condition that involves preequilibration?
    requires_preequilibration = (
        petab_problem.measurement_df is not None
        and petab.PREEQUILIBRATION_CONDITION_ID in petab_problem.measurement_df
        and petab_problem.measurement_df[petab.PREEQUILIBRATION_CONDITION_ID]
        .notnull()
        .any()
    )
    estimated_parameters_ids = petab_problem.get_x_ids(free=True, fixed=False)
    # any initial states overridden to be estimated via the conditions table?
    has_estimated_initial_states = any(
        par_id in petab_problem.condition_df[initial_states.keys()].values
        for par_id in estimated_parameters_ids
    )

    if (
        has_estimated_initial_states
        and requires_preequilibration
        and kwargs.setdefault("generate_sensitivity_code", True)
    ):
        # To support reinitialization of initial conditions after
        # preequilibration we need fixed parameters for the initial
        # conditions. If we need sensitivities w.r.t. to initial conditions,
        # we need to create non-fixed parameters for the initial conditions.
        # We can't have both for the same state variable.
        # (We could handle it via separate amici models if pre-equilibration
        # and estimation of initial values for a given state variable are
        # used in separate PEtab conditions.)
        # We currently assume that we do need sensitivities w.r.t. initial
        # conditions if sensitivities are needed at all.
        # TODO: check this state by state, then we can support some additional
        #  cases
        raise NotImplementedError(
            "PEtab problems that have both, estimated initial conditions "
            "specified in the condition table, and preequilibration with "
            "initial conditions specified in the condition table are not "
            "supported."
        )

    fixed_parameters = []
    if initial_states and requires_preequilibration:
        # add preequilibration indicator variable
        if sbml_model.getParameter(PREEQ_INDICATOR_ID) is not None:
            raise AssertionError(
                "Model already has a parameter with ID "
                f"{PREEQ_INDICATOR_ID}. Cannot handle "
                "species and compartments in condition table "
                "then."
            )
        indicator = sbml_model.createParameter()
        indicator.setId(PREEQ_INDICATOR_ID)
        indicator.setName(PREEQ_INDICATOR_ID)
        # Can only reset parameters after preequilibration if they are fixed.
        fixed_parameters.append(PREEQ_INDICATOR_ID)
        logger.debug(
            f"Adding preequilibration indicator constant {PREEQ_INDICATOR_ID}"
        )
    logger.debug(
        f"Adding initial assignments for {list(initial_states.keys())}"
    )
    for assignee_id in initial_states:
        init_par_id_preeq = f"initial_{assignee_id}_preeq"
        init_par_id_sim = f"initial_{assignee_id}_sim"
        for init_par_id in (
            [init_par_id_preeq] if requires_preequilibration else []
        ) + [init_par_id_sim]:
            if sbml_model.getElementBySId(init_par_id) is not None:
                raise ValueError(
                    "Cannot create parameter for initial assignment "
                    f"for {assignee_id} because an entity named "
                    f"{init_par_id} exists already in the model."
                )
            init_par = sbml_model.createParameter()
            init_par.setId(init_par_id)
            init_par.setName(init_par_id)
            if requires_preequilibration:
                # must be a fixed parameter to allow reinitialization
                # TODO: also add other initial condition parameters that are
                #  not estimated
                fixed_parameters.append(init_par_id)

        assignment = sbml_model.getInitialAssignment(assignee_id)
        if assignment is None:
            assignment = sbml_model.createInitialAssignment()
            assignment.setSymbol(assignee_id)
        else:
            logger.debug(
                "The SBML model has an initial assignment defined "
                f"for model entity {assignee_id}, but this entity "
                "also has an initial value defined in the PEtab "
                "condition table. The SBML initial assignment will "
                "be overwritten to handle preequilibration and "
                "initial values specified by the PEtab problem."
            )
        if requires_preequilibration:
            formula = (
                f"{PREEQ_INDICATOR_ID} * {init_par_id_preeq} "
                f"+ (1 - {PREEQ_INDICATOR_ID}) * {init_par_id_sim}"
            )
        else:
            formula = init_par_id_sim
        math_ast = libsbml.parseL3Formula(formula)
        assignment.setMath(math_ast)

    return fixed_parameters


def _workaround_observable_parameters(
    observation_model: list[MeasurementChannel],
    sbml_model: libsbml.Model,
    output_parameter_defaults: dict[str, float] | None,
    jax: bool = False,
) -> None:
    """
    Add PEtab observable parameters to the SBML model.

    The PEtab observable table may contain placeholder parameters that are
    not defined in the SBML model. We need to add them to the SBML model before
    the actual SBML import.
    """
    formulas = chain(
        (obs.formula for obs in observation_model),
        (obs.sigma for obs in observation_model),
    )
    id_to_observable = {obs.id: obs for obs in observation_model}
    output_parameters = OrderedDict()
    for formula in formulas:
        # we want reproducible parameter ordering upon repeated import
        free_syms = sorted(
            sp.sympify(formula, locals=_clash).free_symbols,
            key=lambda symbol: symbol.name,
        )
        for free_sym in free_syms:
            sym = str(free_sym)
            if jax and (m := re.match(r"(noiseParameter\d+)_(\w+)", sym)):
                # group1 is the noise parameter, group2 is the observable, don't add to sbml but replace with generic
                # noise parameter
                # FIXME: get rid of those str(sympify(...)) here and below
                id_to_observable[m.group(2)].sigma = str(
                    sp.sympify(
                        id_to_observable[m.group(2)].sigma, locals=_clash
                    ).subs(free_sym, sp.Symbol(m.group(1)))
                )
            elif jax and (
                m := re.match(r"(observableParameter\d+)_(\w+)", sym)
            ):
                # group1 is the noise parameter, group2 is the observable, don't add to sbml but replace with generic
                # observable parameter
                id_to_observable[m.group(2)].formula = str(
                    sp.sympify(
                        id_to_observable[m.group(2)].formula, locals=_clash
                    ).subs(free_sym, sp.Symbol(m.group(1)))
                )
            elif (
                sbml_model.getElementBySId(sym) is None
                and sym != "time"
                and sym not in id_to_observable
            ):
                output_parameters[sym] = None
    logger.debug(
        f"Adding output parameters to model: {list(output_parameters.keys())}"
    )
    output_parameter_defaults = output_parameter_defaults or {}
    if extra_pars := (
        set(output_parameter_defaults) - set(output_parameters.keys())
    ):
        raise ValueError(
            f"Default output parameter values were given for {extra_pars}, "
            "but they those are not output parameters."
        )

    for par in output_parameters.keys():
        _add_global_parameter(
            sbml_model=sbml_model,
            parameter_id=par,
            value=output_parameter_defaults.get(par, 0.0),
        )


[docs] @log_execution_time("Importing PEtab model", logger) def import_model_sbml( petab_problem: petab.Problem = None, model_name: str | None = None, model_output_dir: str | Path | None = None, verbose: bool | int | None = True, allow_reinit_fixpar_initcond: bool = True, validate: bool = True, non_estimated_parameters_as_constants=True, output_parameter_defaults: dict[str, float] | None = None, discard_sbml_annotations: bool = False, hybridization: dict = None, jax: bool = False, **kwargs, ) -> amici.SbmlImporter: """ Create AMICI model from PEtab problem :param petab_problem: PEtab problem. :param model_name: Name of the generated model. If model file name was provided, this defaults to the file name without extension, otherwise the SBML model ID will be used. :param model_output_dir: Directory to write the model code to. Will be created if doesn't exist. Defaults to current directory. :param verbose: Print/log extra information. :param allow_reinit_fixpar_initcond: See :class:`amici.de_export.ODEExporter`. Must be enabled if initial states are to be reset after preequilibration. :param validate: Whether to validate the PEtab problem :param non_estimated_parameters_as_constants: Whether parameters marked as non-estimated in PEtab should be considered constant in AMICI. Setting this to ``True`` will reduce model size and simulation times. If sensitivities with respect to those parameters are required, this should be set to ``False``. :param output_parameter_defaults: Optional default parameter values for output parameters introduced in the PEtab observables table, in particular for placeholder parameters. dictionary mapping parameter IDs to default values. :param discard_sbml_annotations: Discard information contained in AMICI SBML annotations (debug). :param jax: Whether to generate JAX code instead of C++ code. :param kwargs: Additional keyword arguments to be passed to :meth:`amici.sbml_import.SbmlImporter.sbml2amici`. :return: The created :class:`amici.sbml_import.SbmlImporter` instance. """ from petab.v1.models.sbml_model import SbmlModel set_log_level(logger, verbose) logger.info("Importing model ...") if petab_problem.observable_df is None: raise NotImplementedError( "PEtab import without observables table " "is currently not supported." ) assert isinstance(petab_problem.model, SbmlModel) if validate: logger.info("Validating PEtab problem ...") petab.lint_problem(petab_problem) # Model name from SBML ID or filename if model_name is None: if not (model_name := petab_problem.model.sbml_model.getId()): raise ValueError( "No `model_name` was provided and no model " "ID was specified in the SBML model." ) if model_output_dir is None: model_output_dir = os.path.join( os.getcwd(), f"{model_name}-amici{amici.__version__}" ) logger.info( f"Model name is '{model_name}'.\n" f"Writing model code to '{model_output_dir}'." ) # Create a copy, because it will be modified by SbmlImporter sbml_doc = petab_problem.model.sbml_model.getSBMLDocument().clone() sbml_model = sbml_doc.getModel() show_model_info(sbml_model) sbml_importer = amici.SbmlImporter( sbml_model, discard_annotations=discard_sbml_annotations, ) sbml_model = sbml_importer.sbml allow_n_noise_pars = ( not petab.lint.observable_table_has_nontrivial_noise_formula( petab_problem.observable_df ) ) if ( not jax and petab_problem.measurement_df is not None and petab.lint.measurement_table_has_timepoint_specific_mappings( petab_problem.measurement_df, allow_scalar_numeric_noise_parameters=allow_n_noise_pars, ) ): raise ValueError( "AMICI does not support importing models with timepoint specific " "mappings for noise or observable parameters. Please flatten " "the problem and try again." ) observation_model = get_observation_model(petab_problem.observable_df) logger.info(f"Number of observables: {len(observation_model)}") _workaround_observable_parameters( observation_model, sbml_model, output_parameter_defaults, jax=jax ) if not jax: fixed_parameters = _workaround_initial_states( petab_problem=petab_problem, sbml_model=sbml_model, **kwargs, ) else: fixed_parameters = [] fixed_parameters.extend( _get_fixed_parameters_sbml( petab_problem=petab_problem, non_estimated_parameters_as_constants=non_estimated_parameters_as_constants, ) ) logger.debug(f"Fixed parameters are {fixed_parameters}") logger.info(f"Overall fixed parameters: {len(fixed_parameters)}") logger.info( "Variable parameters: " + str(len(sbml_model.getListOfParameters()) - len(fixed_parameters)) ) # Create Python module from SBML model if jax: sbml_importer.sbml2jax( model_name=model_name, output_dir=model_output_dir, observation_model=observation_model, verbose=verbose, hybridization=hybridization, **kwargs, ) return sbml_importer else: if hybridization: raise NotImplementedError( "Hybridization is currently only supported for JAX models." ) sbml_importer.sbml2amici( model_name=model_name, output_dir=model_output_dir, observation_model=observation_model, constant_parameters=fixed_parameters, allow_reinit_fixpar_initcond=allow_reinit_fixpar_initcond, verbose=verbose, **kwargs, ) if kwargs.get( "compile", amici._get_default_argument(sbml_importer.sbml2amici, "compile"), ): # check that the model extension was compiled successfully model_module = amici.import_model_module(model_name, model_output_dir) model = model_module.get_model() check_model(amici_model=model, petab_problem=petab_problem) return sbml_importer
[docs] def show_model_info(sbml_model: "libsbml.Model"): """Log some model quantities""" logger.info(f"Species: {len(sbml_model.getListOfSpecies())}") logger.info( "Global parameters: " + str(len(sbml_model.getListOfParameters())) ) logger.info(f"Reactions: {len(sbml_model.getListOfReactions())}")
# TODO - remove?!
[docs] def species_to_parameters( species_ids: list[str], sbml_model: "libsbml.Model" ) -> list[str]: """ Turn a SBML species into parameters and replace species references inside the model instance. :param species_ids: list of SBML species ID to convert to parameters with the same ID as the replaced species. :param sbml_model: SBML model to modify :return: list of IDs of species which have been converted to parameters """ transformables = [] for species_id in species_ids: species = sbml_model.getSpecies(species_id) if species.getHasOnlySubstanceUnits(): logger.warning( f"Ignoring {species.getId()} which has only substance units." " Conversion not yet implemented." ) continue if math.isnan(species.getInitialConcentration()): logger.warning( f"Ignoring {species.getId()} which has no initial " "concentration. Amount conversion not yet implemented." ) continue transformables.append(species_id) # Must not remove species while iterating over getListOfSpecies() for species_id in transformables: species = sbml_model.removeSpecies(species_id) par = sbml_model.createParameter() par.setId(species.getId()) par.setName(species.getName()) par.setConstant(True) par.setValue(species.getInitialConcentration()) par.setUnits(species.getUnits()) # Remove from reactants and products for reaction in sbml_model.getListOfReactions(): for species_id in transformables: # loop, since removeX only removes one instance while reaction.removeReactant(species_id): # remove from reactants pass while reaction.removeProduct(species_id): # remove from products pass while reaction.removeModifier(species_id): # remove from modifiers pass return transformables
def _add_global_parameter( sbml_model: libsbml.Model, parameter_id: str, parameter_name: str = None, constant: bool = False, units: str = "dimensionless", value: float = 0.0, ) -> libsbml.Parameter: """Add new global parameter to SBML model Arguments: sbml_model: SBML model parameter_id: ID of the new parameter parameter_name: Name of the new parameter constant: Is parameter constant? units: SBML unit ID value: parameter value Returns: The created parameter """ if parameter_name is None: parameter_name = parameter_id p = sbml_model.createParameter() p.setId(parameter_id) p.setName(parameter_name) p.setConstant(constant) p.setValue(value) p.setUnits(units) return p def _get_fixed_parameters_sbml( petab_problem: petab.Problem, non_estimated_parameters_as_constants=True, ) -> list[str]: """ Determine, set and return fixed model parameters. Non-estimated parameters and parameters specified in the condition table are turned into constants (unless they are overridden). Only global SBML parameters are considered. Local parameters are ignored. :param petab_problem: The PEtab problem instance :param non_estimated_parameters_as_constants: Whether parameters marked as non-estimated in PEtab should be considered constant in AMICI. Setting this to ``True`` will reduce model size and simulation times. If sensitivities with respect to those parameters are required, this should be set to ``False``. :return: list of IDs of parameters which are to be considered constant. """ if not petab_problem.model.type_id == MODEL_TYPE_SBML: raise ValueError("Not an SBML model.") # initial concentrations for species or initial compartment sizes in # condition table will need to be turned into fixed parameters # if there is no initial assignment for that species, we'd need # to create one. to avoid any naming collision right away, we don't # allow that for now # we can't handle them yet compartments = [ col for col in petab_problem.condition_df if petab_problem.model.sbml_model.getCompartment(col) is not None ] if compartments: raise NotImplementedError( "Can't handle initial compartment sizes " "at the moment. Consider creating an " f"initial assignment for {compartments}" ) fixed_parameters = get_fixed_parameters( petab_problem, non_estimated_parameters_as_constants ) # exclude targets of rules or initial assignments that are not numbers sbml_model = petab_problem.model.sbml_model parser_settings = libsbml.L3ParserSettings() parser_settings.setModel(sbml_model) parser_settings.setParseUnits(libsbml.L3P_NO_UNITS) for fixed_parameter in fixed_parameters.copy(): # check global parameters if sbml_model.getRuleByVariable(fixed_parameter): fixed_parameters.remove(fixed_parameter) continue if ia := sbml_model.getInitialAssignmentBySymbol(fixed_parameter): sym_math = sp.sympify( libsbml.formulaToL3StringWithSettings( ia.getMath(), parser_settings ) ) if not sym_math.evalf().is_Number: fixed_parameters.remove(fixed_parameter) continue return list(sorted(fixed_parameters))