amici.petab.simulations
Functionality related to simulation of PEtab problems.
Functionality related to running simulations or evaluating the objective function as defined by a PEtab problem.
Functions
|
Aggregate likelihood gradient for all conditions, according to PEtab parameter mapping. |
|
Create a measurement dataframe in the PEtab format from the passed |
|
Create a PEtab simulation dataframe from |
|
Rescale a sensitivity between parameter scales. |
|
Simulate PEtab model. |
- amici.petab.simulations.simulate_petab(petab_problem, amici_model, solver=None, problem_parameters=None, simulation_conditions=None, edatas=None, parameter_mapping=None, scaled_parameters=False, log_level=30, num_threads=1, failfast=True, scaled_gradients=False)[source]
Simulate PEtab model.
Note
Regardless of scaled_parameters, unscaled sensitivities are returned, unless scaled_gradients=True.
- Parameters:
petab_problem (
petab.v1.problem.Problem) – PEtab problem to work on.amici_model (
amici.amici.Model|amici.amici.ModelPtr) – AMICI Model assumed to be compatible withpetab_problem.solver (
amici.amici.Solver|None) – An AMICI solver. Will use default options if None.problem_parameters (
dict[str,float] |None) – Run simulation with these parameters. IfNone, PEtabnominalValueswill be used. To be provided as dict, mapping PEtab problem parameters to SBML IDs.simulation_conditions (
pandas.core.frame.DataFrame|dict) – Result ofpetab.get_simulation_conditions(). Can be provided to save time if this has be obtained before. Not required ifedatasandparameter_mappingare provided.edatas (
list[typing.Union[amici.amici.ExpData,amici.amici.ExpDataPtr]]) – Experimental data. Parameters are inserted in-place for simulation.parameter_mapping (
amici.petab.parameter_mapping.ParameterMapping) – Optional precomputed PEtab parameter mapping for efficiency, as generated bycreate_parameter_mapping()withscaled_parameters=True.scaled_parameters (
bool|None) – IfTrue,problem_parametersare assumed to be on the scale provided in the PEtab parameter table and will be unscaled. IfFalse, they are assumed to be in linear scale. If parameter_mapping is provided, this must match the value of scaled_parameters used to generate the mapping.log_level (
int) – Log level, seeamici.loggingmodule.num_threads (
int) – Number of threads to use for simulating multiple conditions (only used if compiled with OpenMP).failfast (
bool) – Returns as soon as an integration failure is encountered, skipping any remaining simulations.scaled_gradients (
bool) – Whether to compute gradients on parameter scale (True) or not (False).
- Return type:
- Returns:
Dictionary of
cost function value (
LLH),list of
amici.amici.ReturnData(RDATAS),list of
amici.amici.ExpData(EDATAS),
corresponding to the different simulation conditions. For ordering of simulation conditions, see
petab.Problem.get_simulation_conditions_from_measurement_df().